The horizontal range of a projectile fired at an angle of \(15^\circ\) is \(50\) m. If it is fired with the same speed at an angle of \(45^\circ\), its range will be:
1. \(60\) m
2. \(71\) m
3. \(100\) m
4. \(141\) m

(c) Hint: Use the formula of range of the projectile.

Step 1: Find the initial speed of the projectile.

We know that
where θ is the angle of projection
Given

θ=15 and R=50m Range, R=u2sin2θg

Putting all the given values in the formula, we get

 A=50m=u2sin(2×15)g 50×g=u2sin30=u2×12

50×g×2 =u2u2 =50×9.8×2=100×9.8=980u =980=49×20=7×2×5m/s   = 14×223m/s=31.304m/s 
 For θ=45;R=u2sin2×45g=u2g(sin90=1)A=(145)2g=14×14×59.8=100m