It is found that \(|\vec{A}+\vec{B}|=|\vec{A}|\). This necessarily implies:

1. \(\vec{B}=0\)
2. \(\vec{A},\) \(\vec{B}\) are antiparallel
3. \(\vec{A}\) and \(\vec{B}\) are perpendicular
4. \(\vec{A}.\vec{B}\leq0\)

(4) Hint: Use the parallelogram method to find the magnitude of the resultant.

Step 1: Find the magnitude of the resultant.

 Given that               | A + B| = |A| or |A + B|2 = |A|2|A|2+|B|2+2|A||B|cosθ=|A|2

where θ is the angle between A and B.

Step 2: Solve it to find the necessary conditions.

 |B|(|B|+2|A|cosθ)=0 |B|=0 or |B|+2|A|cosθ=0 cos θ=|B|2|A|

If A and B are antiparallel, then θ = 180°
Hence, from Eq. (i)

1=|B|2|A||B|=2|A|

Hence, the correct answer will either |B| = 0 or A and B are antiparallel |Bl = 2|A|