If |→A|=2 and |→B|=4, then match the relations in Column I with the angle θ between →A and →B in Column II.
Column I | Column II | ||
(a) | →A.→B=0 | (i) | θ=0∘ |
(b) | →A.→B=8 | (ii) | θ=90∘ |
(c) | →A.→B=4 | (iii) | θ=180∘ |
(d) | →A.→B=−8 | (iv) | θ=60∘ |
Choose the correct answer from the options given below:
1. | (a)–(iii), (b)-(ii), (c)-(i), (d)-(iv) |
2. | (a)–(ii), (b)-(i), (c)-(iv), (d)-(iii) |
3. | (a)–(ii), (b)-(iv), (c)-(iii), (d)-(i) |
4. | (a)–(iii), (b)-(i), (c)-(ii), (d)-(iv) |
Step: Analyse all the options.
Given: |A|=2 and |B|=4(a) →A.→B=ABcosθ=0⇒2×4cosθ=0⇒cosθ=0=cos90∘⇒θ=90∘Therefore, option (a) matches with option (ii).
(b) →A.→B=ABcosθ=8⇒2×4cosθ=8⇒cosθ=1=cos0∘⇒θ=0∘Therefore, option (b) matches with option (i).
(c) →A.→B=ABcosθ=4⇒2×4cosθ=4⇒cosθ=12=cos60∘⇒θ=60∘Therefore, option (c) matches with option (iv).
(d) →A.→B=ABcosθ=−8⇒2×4cosθ=−8⇒cosθ=−1=cos180∘⇒θ=180∘Therefore, option (d) matches with option (iii).
Therefore, the correct match is (a)→(ii);(b)→(i);(c)→(iv);(d)→(iii)
Hence, option (2) is the correct answer.
© 2025 GoodEd Technologies Pvt. Ltd.