If \(\left| \vec{A}\right|\) = \(2\) and \(\left| \vec{B}\right|\) = \(4,\) then match the relations in column-I with the angle \(\theta\) between \(\vec{A}\) and \(\vec{B}\) in column-II.     

Column-I Column-II
(A) \(\left| \vec{A}\times \vec{B}\right|\) \(=0\)  (p)  \(\theta=30^\circ\)
(B)\(\left| \vec{A}\times \vec{B}\right|\)\(=8\)   (q) \(\theta=45^\circ\)
(C) \(\left| \vec{A}\times \vec{B}\right|\) \(=4\)  (r)  \(\theta=90^\circ\)
(D) \(\left| \vec{A}\times \vec{B}\right|\) \(=4\sqrt2\) (s)  \(\theta=0^\circ\)
1. A(s), B(r), C(q), D(p)
2. A(s), B(p), C(r), D(q)
3. A(s), B(p), C(q), D(r)
4. A(s), B(r), C(p), D(q)
 
Hint: Recall vector product.
Step 1: Use |A×B| = ABsinθ and calculate θ in each part.

Given |A| = 2 and |B| = 4

 (a) |A×B|=ABsinθ=02×4×sinθ=0sinθ=0=sin0θ=0 Option (a) matches with option (iv). 

 (b) |A×B|=ABsinθ=82×4sinθ=8sinθ=1=sin90θ=90 Option (b) matches with option (iii). 

 (c) |A×B|=ABsinθ=42×4sinθ=4sinθ=12=sin30θ=30 Option (c) matches with option (i). 

 (d) |A×B|=ABsinθ=422×4sinθ=42sinθ=12=sin45θ=45 Option (d) matches with option (ii).