For two vectors \(\vec A\) and \(\vec B\), |\(\vec A\)+\(\vec B\)|=|\(\vec A\) - \(\vec B\)| is always true when:
(a) | |\(\vec A\)| = |\(\vec B\)| ≠ \(0\) |
(b) | \(\vec A\perp\vec B\) |
(c) | |\(\vec A\)| = |\(\vec B\)| ≠ \(0\) and \(\vec A\) and \(\vec B\) are parallel or antiparallel. |
(d) | when either |\(\vec A\)| or |\(\vec B\)| is zero. |
(3) Hint: Use the parallelogram method.
Step 1: Find the magnitude of the resultant on both sides.
Given, |A+ B| = |A - B|
When , we can say that .
© 2024 GoodEd Technologies Pvt. Ltd.