For two vectors →A and →B, |→A+→B|=|→A - →B| is always true when:
(a) | |→A| = |→B| ≠ 0 |
(b) | →A⊥→B |
(c) | |→A| = |→B| ≠ 0 and →A and →B are parallel or antiparallel. |
(d) | when either |→A| or |→B| is zero. |
1. | (a), (d) |
2. | (b), (c) |
3. | (b), (d) |
4. | (a), (b) |
Hint: Use the parallelogram method.
Step: Find the magnitude of the resultant on both sides.
Given, |A+ B| = |A - B|
⇒ √|A|2+|B|2+2|A||B|cosθ=√|A|2+|B|2−2|A||B|cosθ⇒ ∣∣A∣∣2+∣∣B∣∣2+2∣∣A∣∣∣∣B∣∣cosθ=∣∣A∣∣2+∣∣B∣∣2−2∣∣A∣∣∣∣B∣∣cosθ
⇒ 4|A||B|cosθ=0⇒ |A||B|cosθ=0⇒ |A|=0 or |B|=0 or cosθ=0⇒ θ = 90
When θ=90∘, we can say that A ⊥ B.
Hence, option (3) is the correct answer.
© 2025 GoodEd Technologies Pvt. Ltd.