For two vectors A and B, |A+B|=|A - B| is always true when:

(a) |A| = |B|  ≠ 0
(b) AB
(c) |A| = |B|  ≠ 0 and A and B are parallel or antiparallel.
(d) when either |A| or |B| is zero.

Choose the correct option from the given ones:
1. (a), (d)
2. (b), (c)
3. (b), (d)
4. (a), (b)

Hint: Use the parallelogram method.

Step: Find the magnitude of the resultant on both sides.

Given, |A+ B| = |A - B|

 |A|2+|B|2+2|A||B|cosθ=|A|2+|B|22|A||B|cosθ |A|2+|B|2+2|A||B|cosθ=|A|2+|B|22|A||B|cosθ
 4|A||B|cosθ=0 |A||B|cosθ=0 |A|=0 or |B|=0 or cosθ=0 θ = 90

When θ=90, we can say that A  B.
Hence, option (3) is the correct answer.