4.36. Motion in two dimensions, in a plane, can be studied by expressing position, velocity, and acceleration as a vector in Cartesian coordinates A=Axˆi+AyˆjA=Ax^i+Ay^j where ˆiˆi and ˆjˆj are unit vectors along x and y directions, respectively and AxAx and AyAy are corresponding components of A. Motion can also be studied by expressing vectors in circular polar coordinates as A= Arˆr + AθˆθA= Ar^r + Aθ^θ where ^r = rr = cosθˆi+sinθˆj^r = rr = cosθ^i+sinθ^j  and ˆθ=sinθˆi+cosθˆj and ^θ=sinθ^i+cosθ^j are unit vectors along the direction in which r and θ are increasing.

a) express ˆi and ˆj^i and ^j in terms of ˆr and ˆθ.^r and ^θ.

b) show that both ˆr and ˆθ^r and ^θ are unit vectors and are perpendicular to each other

c) show that  ddt(ˆr)=ωˆθ, where ω=dθdt and ddt(ˆθ)=θˆr

d) for a particle moving along a spiral given by r=aθˆr where a = 1 find dimensions of ‘a’

e) find velocity and acceleration in polar vector representation for a particle moving along spiral described in d) above


Hint: Velocity, v = drdt and acceleration, a = dvdt.

(a)Step 1: Express ˆi and ˆj in terms of ˆr and ˆθ.

Given, unit vector

ˆr=cosθˆi+sinθˆj                              ...(i)ˆθ=sinθˆi+cosθˆj                              ...(ii)

Multiplying Eq. (i) by sinθ and Eq. (ii) with cosθ and adding

ˆrsinθ+ˆθcosθ=sinθcosθˆi+sin2θˆj+cos2θˆjsinθ.cosθˆi=ˆj(cos2θ+sin2θ)=ˆj
ˆrsinθ+θcosθ=ˆj By Eq. (i) ×cosθ Eq. (ii) ×sinθ(ˆrcosθˆθsinθ)=ˆi

Step 2: Use dot product to find the angle between ˆr and ˆθ.

(b)

ˆr.ˆθ=(cosθˆi+sinθˆj)(sinθˆi+cosθˆj)=cosθsinθ+sinθcosθ=0
 θ=90 Angle between ˆr and ˆθ.

Step 3: Find velocity.

(c)

 Given, ˆr=cosθˆi+sinθˆj
dˆrdt=ddt(cosθˆi+sinθˆj)=sinθdtˆi+cosθdtˆj=ω[sinθˆi+cosθˆj][θ=dt]

Step 4: Find the dimension of a using homogeneity principle.

(d)

 Given, r=ˆr, here, writing dimensions [r]=[a][θ][ˆr][L] = [a] [a]=[L]=[M0L1T0]

Step 5: Find velocity and acceleration on the spiral path.

(e)

Given, a= 1 unit r=θˆr=θ[cosθˆi+sinθˆj]
Velocity, v = drdt = dtˆr+θdˆrdt = dtˆr+θddt[(cosθˆi+sinθˆj)]

              =dtˆr+θ[(sinθˆi+cosθˆj)dt]=dtˆr+θˆθω=ωˆr+ωθˆθ

Acceleration,  a=ddt[ωˆr+ωθˆθ]=ddt[dtˆr+dt(θˆθ)]

                     =d2θdt2ˆr+dtdˆrdt+d2θdt2θˆθ+dtddt(θˆθ)=d2θdt2ˆr+ω[sinθˆi+sinθˆj]+d2θdt2θˆθ+ωddt(θˆθ)=d2θdt2ˆr+ω2ˆθ+d2θdt2×θˆθ+ω2ˆθ+ω2θ(ˆr)(d2θdt2ω2θ)ˆr+(2ω2+d2θdt2)ˆθ