4.31. A particle is projected in the air at an angle β to a surface which itself is inclined at an angle α to the horizontal.
a) find an expression of range on the plane surface
b) time of flight
c) β at which range will be maximum
Mutually perpendicular x and y-axes are shown in the diagram.
The particle is projected from point O.
Let the time taken in reaching from point O to point P is T.
(b) Step 2: Considering motion along a vertically upward direction perpendicular to OX.
For the journey O to P.
y=0,uy=v0sinβ,ay=−gcosαit=T
Applying equation,
y=uyt+12ayt2⇒0=v0sinβT+12(−gcosα)T2⇒T[v0sinβ−gcosα2T]=0
⇒T=0,T=2v0sinβgcosα As T=0, corresponding to point O Hence, T= Time of flight =2v0sinβgcosα
(a) Step 3: Considering motion along OX.
x=L1, ux=v0cosβ, ax=−gsinαt = T = 2v0sinβgcosαx = uxt+12axt2
⇒ L = v0cosβT + 12(−gsinα)T2⇒ L = v0cosβT − 12gsinαT2= T[v0cosβ−12gsinαT]= T[v0cosβ−12gsinα×2v0sinβgcosα]= 2v0sinβgcosα[v0cosβ − v0sinαsinβcosα]=2v20sinβgcos2α[cosβ⋅cosα−sinαsinβ]⇒ L = 2v20sinβgcos2αcos(α+β)
(c) Step 4: For range (L) to be maximum, sinβ⋅cos(α+β) should be maximum
Let, Z=sinβ⋅cos(α+β)=sinβ[cosα⋅cosβ−sinα⋅sinβ]=12[cosα⋅sin2β−2sinα⋅sin2β]=12[sin2β⋅cosα−sinα(1−cos2β)]⇒ z=12[sin2β⋅cosα−sinα+sinα⋅cos2β]=12[sin2β⋅cosα+cos2β⋅sinα−sinα]=12[sin(2β+α)−sinα]
Step 5: For z to be maximum
sin(2=β+α)= maximum =1⇒ 2β+α=π2 or, β=π4−α2
© 2025 GoodEd Technologies Pvt. Ltd.