Question 6.25:

Two inclined frictionless tracks, one gradual and the other steep meet at A from where two stones are allowed to slide down from rest, one on each track (Fig. 6.16). Will the stones reach the bottom at the same time? Will they reach there at the same speed? Explain. θ1=300, θ2=600, and h = 10 m, what are the speeds and times taken by the two stones?


No; the stone moving down the steep plane will reach the bottom first Yes; the stones will reach the bottom with the same speed =vB=vC=14 m/s
And, t1=2.86, t2=1.65 s
The given situation can be shown as in the following figure:

Here, the initial height (AD) for both the stones is the same (h). Hence, both will have the same potential energy at point A.

As per the law of conservation of energy, the kinetic energy of the stones at points B and C will also be the same, i. e.,

12mv12 = 12mv22

v1=v2=v say
Where, m=Mass of each stone
v=Speed of each stones at points B and C

 

Hence, both stones will reach the bottom with the same speed, v

For stone I:

Net force acting on this stone is given by:

Fnet = ma1 = mg sin θ1
a1 = g sin θ1

For stone II:

a2 = g sin θ2
As θ2 > θ1
 sin θ2 > sin θ1
 a2 > a1

Using the first equation of motion, the time of slide can be obtained as:

v = u + at
 t = va as u = 0

For stone I:

t0 = va1

For stone II:

t2 = va2
as a2 > a1
so, t2 > t1

Hence, the stone moving down the steep plane will reach the bottom first.

The speed (v) of each stone at points B and C is given by the relation obtained from the law of conservation of energy.

mgh = 12mv2
 v = 2gh
 = 2 × 9.8 × 10
= 196 = 14 m/s
The times are given as:
t1 = va1 = vg sin θ1 = 149.8 × sin 30 
t1= 149.8 × 12 = 2.86 s
t2 = va2 = vg sin θ2 = 149.8 sin 60 
t2= 149.8 × 32 = 1.65 s