Q.48 A balloon filled with helium rises against gravity increasing its potential energy. The speed of the balloon also increases as it rises. How do you reconcile this with the law of conservation of mechanical energy? You can neglect the viscous drag of air and assume that the density of air is constant.

Hint: Use V(ρairρHe)g = ma = mdvdt = up thrust force on balloon.V(ρairρHe)g = ma = mdvdt = up thrust force on balloon.
Step 1: Find the acceleration of the balloon.

Let m = Mass of balloon
V=Volume of balloonρHe=Density of heliumρair=Density of air
Volume V of balloon displaces volume V of air.

The balloon experience as upthrust

V(ρairρHe)g = ma = mdvdt...............(i)

Integrating with respect to t,
     V(ρairρHe)gt=mv.................(ii)

From eq. (i), a = V(ρair-ρHe)gm

Step 2: Find the height of the balloon in time t.
If the balloon rises to a height h, from s=ut+12at2
 We get h=12at2=12V(ρ air ρHe)mgt2.................(iii)

Step 3: Find K.E. of the balloon in time t.

K.E. = 12mv2 = (mv)22m  = (ρair - ρHe)2V2g2t22m      using eq. (ii)

Step 4: Rearranging the kinetic energy in terms of potential energy.
Rearranging the terms,
As K.E. = 12mv2 = (mv)22m  = (ρair - ρHe)2V2g2t22m
            = V(ρair - ρHe)g[(ρair - ρHe)V2mgt2]        
            = V(ρair - ρHe)gh    
 12mv2+Hegh = airgh
 KEballoon+PEbaloon = Change in PE of air. 

So, as the balloon goes up, an equal volume of air comes down. Increase in P.E. and K.E. of the balloon is at the cost of P.E. of air [which comes down],