Q.24 Consider a long steel bar under tensile stress due to force F acting at the edges along the length of the bar (figure). Consider a plane making an angle θ with the length. What are the tensile and shearing stresses on this plane?

(a) For what angle is the tensile stress a maximum?

(b) For what angle is the shearing stress a maximum?

Hint: For stress, consider the force perpendicular to the plane.
Step 1: Find the tensile and shearing stresses.
Consider the adjacent diagram.
Let the cross-sectional area of the bar be A. Consider the equilibrium of the plane aa'. A force F must be acting on this plane making an angle π2-θ with the normal ON. Resolving F into components along the plane (FP) and normal to the plane.
 Fp=F cosθ
FN=F sinθ
Let the area of the face aa' be A', then,
AA'=sinθA'=Asinθ
The tensile stress =Normal forceArea=F sinθA'
                          =F sinθA/sinθ=FAsin2θ
Shearing stress = Parallel forceArea
                        =F cosθA/Sinθ=FAsinθ. cosθ
=F2A(2 sinθ. cosθ)=F2Asin 2θ
Step 2: Find the maximum tensile stress.
(a) For tensile stress to be maximum, sin2θ=1
                                                           sinθ=1
                                                                θ=π2
Step 3: Find the minimum shearing stress.
(b) For shearing stress to be maximum,
                                                          sin2θ=1                                                     2θ=π2                                                     θ=π4