Loading [MathJax]/jax/output/CommonHTML/jax.js

Q.26. A steel rod of length 2l, cross-sectional area A and mass M is set rotating in a horizontal plane about an axis passing through the centre. If Y is Young's modulus for steel, find the extension in the length of the rod. (assume the rod is uniform)

 

Hint: The centrifugal force in the rod produces strain in the rod.
Step 1: Find the tension in the rod.
Consider an element of width dr at r as shown in the diagram.
 
Let T(r) and T(r+dr) be the tensions at r and r+dr respectively.
 
Net centrifugal force on the element =ω2rdm   (where ω is the angular velocity of the rod)
                                                     =ω2rμdr   (μ= mass/length )
                             T(r)-T(r+dr)=μω2rdr
                                          -dT=μω2rdr
                                                    [ Tension and centrifugal forces are opposite]
                                   -TT=0dT=r=rr=lμω2rdr                        [T=0 at r=l]
                                           T(r)=μω22(l2-r2)
 
Step 2: Find the strain produced in the rod.
 
Let the increase in length of the element dr be Δr.
 
 
So, Young's modulus, Y= Stress  Strain =T(r)/AΔrdr
 
  Δrdr=T(r)YA=μω22YA(l2-r2)
 
  Δr=1YAμω22(l2-r2)dr
 
 = change in length in right part = 1YAμω22l0(l2-r2)dr
                                                    =(1YA)μω22[l3-l33]=13YAμω2l2
   Total change in length =2Δ=23YAμω2l2