Hint: The centrifugal force in the rod produces strain in the rod.
Step 1: Find the tension in the rod.
Consider an element of width dr at r as shown in the diagram.
Let T(r) and T(r+dr) be the tensions at r and r+dr respectively.
Net centrifugal force on the element =ω2rdm (where ω is the angular velocity of the rod)
=ω2rμdr (∵μ= mass/length )
⇒ T(r)-T(r+dr)=μω2rdr
⇒ -dT=μω2rdr
[∵ Tension and centrifugal forces are opposite]
∴ -∫TT=0dT=∫r=rr=lμω2rdr [∵T=0 at r=l]
⇒ T(r)=μω22(l2-r2)
Step 2: Find the strain produced in the rod.
Let the increase in length of the element dr be Δr.
So, Young's modulus, Y= Stress Strain =T(r)/AΔrdr
∴ Δrdr=T(r)YA=μω22YA(l2-r2)
∴ Δr=1YAμω22(l2-r2)dr
∴ ∆= change in length in right part = 1YAμω22∫l0(l2-r2)dr
=(1YA)μω22[l3-l33]=13YAμω2l2
∴ Total change in length =2Δ=23YAμω2l2