Consider the L-C-R circuit shown in the figure. Find the net current i and the phase of i. Show that i=VZi=VZ. Find the impedance Z for this circuit.

                                       

Hint: The net current will be equal to the sum of currents flowing in the two branches.
Step 1: In the given figure i is the total current from the source. It is divided into two parts i2i2 through R and i1i1 through series combination of C and L.
So, we can write; i=i1i1+i2i2
As,       Vmsinωt=Ri1              [from the circuit diagram]As,       Vmsinωt=Ri1              [from the circuit diagram]
                        i1=VmsinωtR                ...(i)                        i1=VmsinωtR                ...(i)
Step 2: If q2q2 is the charge on the capacitor at any time t, then for a series combination of C and L, applying KVL in the lower Circuit as shown;
q2C+Ldi2dt-Vmsinωt=0q2C+Ldi2dtVmsinωt=0
  q2C+Ld2q2dt2=Vmsin ωt                  [i2=dq2dt]...(ii)
Let,                q2=qm sin(ωt+ϕ)
                dq2dt=qmω cos(ωt+ϕ)
             d2q2dt2=-qmω2 sin (ωt+ϕ)
Step 3: Now putting these values in Eq. (ii), we get;
qm[1C+L(-ω2)]sin (ωt+ϕ)=Vmsinωt
If ϕ=0 and (1C-Lω2)>0,
then             qm=Vm(1C-Lω2)                           ...(iv)
From Eq. (iii),         i2=dq2dt=ωqm cos(ωt+ϕ)
Using Eq. (iv),        i2=ωVmcos(ωt+ϕ)(1C-Lω2)
Taking ϕ=0; i2=Vmcos(ωt)(1ωC-Lω)                  ...(v) 
Step 4: From Eqs. (i) and (v), we find that i1 and i2 are out of phase by π2.
Now,     i1+i2=VmsinωtR+Vm cos ωt(1ωC-Lω)
Put        VmR=A=C cos ϕ and Vm(1ωC-Lω)=B=C sin ϕ
               i1+i2=C cos ϕ sin ωt+C sin ϕ cos ωt
                             = C sin (ωt+ϕ)
where             C=A2+B2
and                 ϕ=tan-1(BA)
and                 ϕ=tan-1[R(1ωC-Lω)]
Hence,        i=i2+i2=[V2mR2+V2m(1ωC-Lω)2]1/2sin(ωt+ϕ)
or                   iVm=1Z=[V2mR2+V2m(1ωC-Lω)2]1/2sin(ωt+ϕ)
This is the expression for impedance Z of the circuit.