In the L-C-R circuit, shown in the figure the AC driving voltage is V=Vm sin ωtV=Vm sin ωt.

(a) Write down the equation of motion for q(t).

(b) At t=t0t=t0, the voltage source stops and R is short-circuited. Now write down how much energy is stored in each of L and C.

(c) Describe subsequently motion of charges.

                       

Hint: Use Kirchoff's law.
Step 1: (a) Consider the R-L-C circuit shown in the adjacent diagram.
Given, V=Vm sin ωtV=Vm sin ωt
Let current at any instant be i.
Applying KVL in the given circuit;
iR+Ldidt+qC-Vm sin ωt=0                 ...(i)iR+Ldidt+qCVm sin ωt=0                 ...(i)
Now, we can write,      i=dqdtdidt=d2qdt2i=dqdtdidt=d2qdt2
From Eq. (i),  dqdtR+Ld2qdt2+qC=Vm sin ωtdqdtR+Ld2qdt2+qC=Vm sin ωt
             Ld2qdt2+Rdqdt+qC=Vm sin ωt             Ld2qdt2+Rdqdt+qC=Vm sin ωt
This is the required equation of variation (motion) of charge.
(b) Step 2:
Let       q=qmsin(ωt+ϕ)=-qmcos(ωt+ϕ)Let       q=qmsin(ωt+ϕ)=qmcos(ωt+ϕ)
                                        i=im sin (ωt+ϕ)=qm ωsin(ωt+ϕ)                                        i=im sin (ωt+ϕ)=qm ωsin(ωt+ϕ)
                                     im=VmZ=VmR2+(XC-XL)2                                     im=VmZ=VmR2+(XCXL)2
                                      ϕ=tan-1(XC-XLR)                                      ϕ=tan1(XCXLR)
Step 3: When R is short-circuited at t=t0t=t0, the energy is stored in L and C.
UL=12Li2=12L[Vm(R2+XC-XL)2]2 sin2 (ωt0+ϕ)UL=12Li2=12L[Vm(R2+XCXL)2]2 sin2 (ωt0+ϕ)
and           UC=12×q2C=12C[q2m cos2 (ωt0+ϕ)]and           UC=12×q2C=12C[q2m cos2 (ωt0+ϕ)]
                      =12C×(imω)2 cos2 (ωt0+φ)                  [im=qmω]
                      =12C[VmR2+(XC-XL)2]2   cos2(ωt0+ϕ)ω2
                      =122[VmR2+(XC-XL)2]2   cos2(ωt0+ϕ)
(c) Step 4: When R is short-circuited, the circuit becomes an L-C oscillator. The capacitor will go on discharging and all energy will go to L and back and forth. Hene, there is an oscillation of energy from electrostatic to magnetic and magnetic to electrostatic.