Hint: Use Kirchoff's law.
Step 1: (a) Consider the R-L-C circuit shown in the adjacent diagram.
Given, V=Vm sin ωtV=Vm sin ωt
Let current at any instant be i.
Applying KVL in the given circuit;
iR+Ldidt+qC-Vm sin ωt=0 ...(i)iR+Ldidt+qC−Vm sin ωt=0 ...(i)
Now, we can write, i=dqdt⇒didt=d2qdt2i=dqdt⇒didt=d2qdt2
From Eq. (i), dqdtR+Ld2qdt2+qC=Vm sin ωtdqdtR+Ld2qdt2+qC=Vm sin ωt
⇒ Ld2qdt2+Rdqdt+qC=Vm sin ωt⇒ Ld2qdt2+Rdqdt+qC=Vm sin ωt
This is the required equation of variation (motion) of charge.
(b) Step 2:
Let q=qmsin(ωt+ϕ)=-qmcos(ωt+ϕ)Let q=qmsin(ωt+ϕ)=−qmcos(ωt+ϕ)
i=im sin (ωt+ϕ)=qm ωsin(ωt+ϕ) i=im sin (ωt+ϕ)=qm ωsin(ωt+ϕ)
im=VmZ=Vm√R2+(XC-XL)2 im=VmZ=Vm√R2+(XC−XL)2
ϕ=tan-1(XC-XLR) ϕ=tan−1(XC−XLR)
Step 3: When R is short-circuited at t=t0t=t0, the energy is stored in L and C.
UL=12Li2=12L[Vm√(R2+XC-XL)2]2 sin2 (ωt0+ϕ)UL=12Li2=12L[Vm√(R2+XC−XL)2]2 sin2 (ωt0+ϕ)
and UC=12×q2C=12C[q2m cos2 (ωt0+ϕ)]and UC=12×q2C=12C[q2m cos2 (ωt0+ϕ)]
=12C×(imω)2 cos2 (ωt0+φ) [∵im=qmω]
=12C[Vm√R2+(XC-XL)2]2 cos2(ωt0+ϕ)ω2
=12Cω2[Vm√R2+(XC-XL)2]2 cos2(ωt0+ϕ)
(c) Step 4: When R is short-circuited, the circuit becomes an L-C oscillator. The capacitor will go on discharging and all energy will go to L and back and forth. Hene, there is an oscillation of energy from electrostatic to magnetic and magnetic to electrostatic.