An electromagnetic wave travels in a vacuum along the \(z\)-direction: \(E=\left(E_1 \hat{i}+E_2 \hat{j}\right) \cos (k z-\omega t)\). Choose the correct options from the following.
(a)  The associated magnetic field is given as: \(B=\dfrac{1}{c}\left(E_1 \hat{i}-E_2 \hat{j}\right) \cos (k z-\omega t)\)
(b)  The associated magnetic field is given as:\(E=\dfrac{1}{c}\left(E_1 \hat{i}-E_2 \hat{j}\right) \cos (k z-\omega t)\)
(c)  The given electromagnetic field is circularly polarised.
(d)  The given electromagnetic wave is plane polarised.

Choose the correct options:
1. (b), (c)
2. (a), (c)
3. (a), (d)
4. (c), (d)

Given, \(\vec{E}=(E_2\hat{i}+E_2\hat{j})cos(kz-\omega t)\)
We know that, \(\vec{B}=\frac{\vec{E}}{c}\)
\(\Rightarrow \vec{B}= \frac{E_1 \hat{i}+E_2\hat{j}}{c} cos(kz-\omega t)\)
Also \(\vec{E}\) & \(\vec{B}\) are perpendicular to each other and the propagation of em-waves is perpendicular to \(\vec{E}\) as well as \(\vec{B},\) so the given em-wave is plane polarised.