13.9 Obtain the amount of \({ }_{27}^{60} \mathrm{Co}\) necessary to provide a radioactive source of 8.0 mCi strength. The half-life of \({ }_{27}^{60} \mathrm{Co}\) is 5.3 years.

Hint: The rate of disintegration is given by: \(\frac{\mathrm{dN}}{\mathrm{dt}}=-\lambda \mathrm{N}\)
Step 1: Find the number of atoms of \({ }_{27}^{60} \mathrm{Co}\).
The strength of the radioactive source is given as:
dNdt=8.0 mCi
=8×10-3×3.7×1010
=29.6×107 decay/s
where, N=Required number of atoms
Half - life of Co2760, T1/2=5.3 years=5.3×365×24×60×60=1.67×108  sec
For decay content λ, we have the rate of decay as:
 dNdt=λN
where, λ=0.693T1/2=0.6931.67×108s-1
N=1λdNdt
=29.6×1070.693=7.133×1016atoms
Step 2: Find the amount of \({ }_{27}^{60} \mathrm{Co}\).
For  Co2760, mass of  6.023×1023(Avoadros number) atoms = 60 g
Mass of 7.133×1016 atoms=60×7.133×10166.023×1023=7.106×10-6g
Hence, the amount of Co2760 necessary for the purpose is  7.106×10-6g.