13.13 The radionuclide 11C decays according to

\({ }_{6}^{11} \mathrm{C} \rightarrow{ }_{5}^{11} \mathrm{~B}+e^{+}+\nu:~~~ T_{1 / 2}=20.3 \min\)

The maximum energy of the emitted positron is 0.960 MeV.

Given the mass values:

m (\({ }_{6}^{11} \mathrm{C}\)) = 11.011434 u and m (\({ }_{6}^{11} \mathrm{~B}\)) = 11.009305 u,

Calculate Q and compare it with the maximum energy of the positron emitted.

Hint: Q-value can be found using mass defect of the nucleus.
Step 1: Find the equation for Q-value.
The given values are:
mC611=11.011434 u and mB611=11.009305 u,
The given nuclear reaction is:
C611B511+e++v
The half-life of C611 nuclei, \(T_{1 / 2}=20.3 \min\)
The maximum energy possessed by the emitted positron=0.960 MeV
The change in the Q-value, Q of the nuclear masses of the C611:
\(\Delta Q=\left[m^{\prime}\left({ }_{6}^{11} C\right)-\left[m^{\prime}\left\{{ }_{5}^{11} B\right\}+m_{e}\right]\right] c^{2}\)
where me=Mass of an electron or positron=0.00058 u
c=speed of light and m'=Respective nuclear masses.
Step 2: Find the value of Q-value.
If atomic masses are used instead of nuclear masses, we have to add 6 me in the case of C611 and 5 me in the case of B511.
Hence, equation (1) reduces to:
Q=mC611-mB511-2mec2
Here, mC611 and mB511 are the atomic masses.
Q=11.011434-11.009305-2×0.00054c2=0.001033 c2u
But 1 u=931.5 MeV/c2
Q=0.0010033×931.50.962 MeV
The value of Q is almost comparable to the maximum energy of the emitted positron.