13.25 A source contains two phosphorous radio nuclides \({ }_{15}^{32} \mathrm{P}\) (T1/2 = 14.3 days) and \({ }_{15}^{33} \mathrm{P}\) (T1/2 = 25.3 days). Initially, 10% of the decays come from \({ }_{15}^{33} \mathrm{P}\). How long one must wait until 90% do so?
Hint: \(N=N_oe^{-\lambda t}\)
Step 1: Find the initial and final number of nuclie in both elements.
Step 2: Write the equations for both elements.
For \({ }_{15}^{33} \mathrm{P}\) nucleus, we can write the number ratio as:
\(\begin{aligned} \frac{9 N^{\prime}}{N} &=\left(\frac{1}{2}\right)^{\frac{1}{T_{1 / 2}}} \\ 9 N^{\prime} &=N(2)^{\frac{-1}{14. 3}} \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots .(2) \end{aligned}\)
Step 3: Find the required time.
On dividing the equation (1) by the equation (2), we get:
\(\frac{1}{9}=9 \times 2\left(\frac{-t}{25.3} +\frac{t}{14.3}\right)\)
© 2024 GoodEd Technologies Pvt. Ltd.