13.31 Suppose India had a target of producing by 2020 AD, 200,000 MW of electric power, ten percent of which was to be obtained from nuclear power plants. Suppose we are given that, on an average, the efficiency of utilization (i.e. conversion to electric energy) of thermal energy produced in a reactor was 25%. How much amount of fissionable uranium would our country need per year by 2020? Take the heat energy per fission of 235U to be about 200MeV.

Hint: The energy released per fission is given by \(E=\Delta mc^2\).
Step 1: Find the amount of energy converted per fission.
Amount of electric power to be generated, P=2×105 MW
10% of this amount has to be obtained from nuclear power plants.
Amount of nuclear power, p1=10100×2×105=2×104×106 J/s=2×1010
×60×60×24×365 J/y
Heat energy released per fission of a U235 nucleus, E=200 MeV
Efficiency of a reactor =25%
Hence, the amount of energy converted into the electrical energy per fission is calculated as:
25100×200=50 MeV
=50×1.6×10-19×106=8×10-12J
Step 2: Find the amount of uraniumm per year.
The number of atoms required for fission per year:
2×1010×60×60×24×3658×10-12=78840×1024 atoms
1 mole, i.e., 235 g of U235contains 6.023×1023 atoms.
Mass of 6.023×1023 atoms of U235=235g=235×10-3kg
Mass of 78840×1024atoms of U235
=235×10-36.023×1023×78840×1024
=3.076×104 kg
Hence, the mass of uranium needed per year is 3.076×104kg.