A truth table for the given circuit is:
  
 

1. \(A\) \(B\) \(E\) 2. \(A\) \(B\) \(E\)
\(0\) \(0\) \(1\) \(0\) \(0\) \(1\)
\(0\) \(1\) \(1\) \(0\) \(1\) \(0\)
\(1\) \(0\) \(1\) \(1\) \(0\) \(0\)
\(1\) \(1\) \(0\) \(1\) \(1\) \(0\)
3. \(A\) \(B\) \(E\) 4. \(A\) \(B\) \(E\)
\(0\) \(0\) \(0\) \(0\) \(0\) \(0\)
\(0\) \(1\) \(1\) \(0\) \(1\) \(1\)
\(1\) \(0\) \(0\) \(1\) \(0\) \(1\)
\(1\) \(1\) \(1\) \(1\) \(1\) \(0\)

Hint: The output depends on the logic of the circuit.
 
Step: Find the truth table for the circuit.
Here, \(C=A.B\) and \(D=\bar A.B\)
\(E=C+D=(A.B)+(\bar A. B)\)
The truth table of this arrangement of gates can be given by;
\(A\) \(B\) \(\bar A\) \(C=A.B\) \(D=\bar A.B\) \(E=(C+D)\)
\(0\) \(0\) \(1\) \(0\) \(0\) \(0\)
\(0\) \(1\) \(1\) \(0\) \(1\) \(1\)
\(1\) \(0\) \(0\) \(0\) \(0\) \(0\)
\(1\) \(1\) \(0\) \(1\) \(0\) \(1\)
Hence, option (3) is the correct answer.