Loading [MathJax]/jax/output/CommonHTML/jax.js

14.7 The motion of a particle executing simple harmonic motion is described by the displacement function, x(t)=Acos(ωt+φ).

If the initial (t = 0) position of the particle is 1 cm and its initial velocity is ω cm/s, what are its amplitude and initial phase angle? The angular frequency of the particle is π per sec. If instead of the cosine function, we choose the sine function to describe the SHM: x = Bsin(ωt + α), what are the amplitude and initial phase of the particle with the above initial conditions.

 


Initially, at t = 0: 
Displacement, x = 1 cm 
Initial velocity, v = ω cm/sec. 
Angular frequency, ω = π rad/s-1
It is given that:
x(t)=A cos(ωt+ϕ)
At t=0, 1=A cos(ω×0+ϕ)=Acosϕ
Acosϕ=1                             (i)
Velocity, v=dxdt
v=-Aωsin(ωt+ϕ)
At t=0, 1=-Asin(ω×0+ϕ)=-Asinϕ
Asinϕ=-1                         (ii)
Squaring and adding equations (i) and (ii), we get:
A2(sin2ϕ+cos2ϕ)=1+1
A2=2
A=2cm
Dividing equation (ii) by equation (i), we get:
tanϕ=-1
ϕ=3π4,7π4,...........
If the SHM is given as:
x=B sin(ωt+α)
Putting the given values in this equation, we get:
At t=0, 1=Bsin[ω×0+α]
Bsinα=1                           (iii)
Velocity,   v=ωBcos(ωt+α)
Substituting the given values, we get:
At t=0, π=πBcosα
Bcosα=1                         (iv)
Squaring and adding equations (iii) and (iv), we get:
B2[sin2 α+cos2 α]=1+1
B2=2
B=2 cm
Dividing equation (iii) by equation (iv), we get:
BsinαBcosα=11
tanα=1tanα=π4
α=π4,5π4,..........