Loading [MathJax]/jax/output/CommonHTML/jax.js

14.11 Figures 14.25 correspond to two circular motions. The radius of the circle, the period of revolution, the initial position, and the sense of revolution (i.e. clockwise or anti-clockwise) are indicated on each figure.

Fig. 14.25

Obtain the corresponding simple harmonic motions of the x-projection of the radius vector of the revolving particle P, in each case.

As we can see in figure (a):
Time period, T = 2 s 
Amplitude, A = 3 cm 
At time t = 0, phase angle φ=+π2
Therefore, the displacement equation for the x-projection of OP, at time t:
x=Acos[2πtT+ϕ]=3cos(2πt2+π2)=3sin(2πt2)x=3sinπt cm
For figure (b):
Time period, T = 4 s
Amplitude, a = 2 m 
At time t = 0, phase angle, Φ = + π 
Therefore, the displacement equation for the x-projection of OP, at time t:
x= Acos(2πtT+ϕ)=2cos(2πt4+π)
x=-2cos(π2t) m