14.16 Answer the following questions :

(a) Time period of a particle in SHM depends on the force constant k and mass m of the particle: T=2πmk.

A simple pendulum executes SHM approximately. Why then is the time period of a pendulum independent of the mass of the pendulum?

(b) The motion of a simple pendulum is approximately simple harmonic for small-angle oscillations. For larger angles of oscillation, a more involved analysis shows that T is greater than 2πlg. Think of a qualitative argument to appreciate this result.

(c) A man with a wristwatch on his hand falls from the top of a tower. Does the watch give correct time during the free fall?

(d) What is the frequency of oscillation of a simple pendulum mounted in a cabin that is freely falling under gravity?


aThe time period of a simple pendulum is given by, T=2πmk
For a simple pendulum: kmmk=Constant
Hence, the time period T of a simple pendulum is independent of the mass of the bob. 
b In the case of a simple pendulum, the restoring force acting on the bob
of the pendulum: 
F = mgsinθ 
For small θ, sin θ  θ
For large θ, sin θ is greater than θ. 
This decreases the effective value of g. 
Hence, the time period increases as: T1g

(c)

Time period of the wristwatch=2πmk

The time period of the wristwatch does not depend on the acceleration due to gravity. So the time shown by the wristwatch of a man falling from the top of a tower is not affected by the fall.

(d) 

When a simple pendulum mounted in a cabin falls freely under gravity, geff=0.
So the frequency of the simple pendulum, f=0.