14.25
A mass attached to a spring is free to oscillate, with angular velocity ω, in a horizontal plane without friction or damping. It is pulled to a distance x0 and pushed towards the centre with a velocity v0 at time t = 0. Determine the amplitude of the resulting oscillations in terms of the parameters ω, x0 and v0. [Hint: Start with the equation x=acos(ωt+θ) and note that the initial velocity is negative.]

The displacement equation is given by: 
x=Acosωt+θ
Velocity, v=dxdt=-Aωsinωt+θ
At t=0, x=x0Acosθ=x0...  i
And, dxdt=-v0=Aωsin θ
Asin θ=v0ω ...  ii
Squaring and adding equations (i) and (ii), we get:
A2(cos2θ+sin2θ)=x02+(v02ω2) A=x02+(v0ω)2
Hence, the amplitude of the resulting oscillation is x02+v0ω2.