(1) Hint: Use the formula of kinetic energy and the total energy of SHM.
Let the equation of an SHM is represented as x=asinωtωt
Assume the mass of the body is m.
(a) Step 1: Find the maximum kinetic energy and average total energy of the particle.
The total mechanical energy of the body at any time t is,
E=12m ω2a2E=12m ω2a2 ...(i)
Kinetic energy at any instant t is,
K=12m v2=12m[dxdt]2 [∵v=dxdt] K=12m v2=12m[dxdt]2 [∵v=dxdt]
=12mω2a2 cos2 ωt =12mω2a2 cos2 ωt
⇒ Kmax=12mω2a2=E [∵ for kmax, cos ωt=1]...(ii)⇒ Kmax=12mω2a2=E [∵ for kmax, cos ωt=1]...(ii)
(b) Step 2: Find the average kinetic energy of the particle.
KE at any instant t is,
K=12mω2a2 cos2 ωt K=12mω2a2 cos2 ωt
(Kav)(Kav) for a cycle =12mω2a2(cos2ωt)av=12mω2a2(cos2ωt)av for a cycle
=12mω2a2[0+12] =12mω2a2[0+12]
=14mω2a2=Kmax2=14mω2a2=Kmax2 [from Eq.(ii)]
Step 3: Find the mean velocity and the RMS velocity of the particle.
(c) Velocity =v=dxdt=a ωcos ωtdxdt=a ωcos ωt
vmean=vmax+vmin2vmean=vmax+vmin2
=aω+(-aω)2=0=aω+(−aω)2=0 [For a complete cycle]
vmax≠vmeanvmax≠vmean
(d)
vrms=√v21+v222=√0+a2ω22=aω√2vrms=√v21+v222=√0+a2ω22=aω√2
⇒ vrms=vmax√2