Find the displacement of a simple harmonic oscillator at which its PE is half of the maximum energy of the oscillator.

Hint: The maximum energy of the oscillator is equal to the potential energy at the extreme position.
Let us assume that the required displacement is x.
Step 1: Find the potential energy at the general position.
 The potential energy of the simple harmonic oscillator =12kx2
Step 2: Find the total energy of the oscillator.
Where k=force constant =mω2
                                                 PE=12mω2x2              ...(i)
Maximum energy of the oscillator,
                               TE=12mω2A2                            [xmax=A]     ...(ii)
where A=amplitude of motion
Step 3: Find the value of the position.
Given,                         PE=12TE
                                            12mω2x2=1212mω2A2
                                                x2=A22
or                                       x=A22=±A2
The sign ± indicates either side of the mean position.