A body of mass m is situated in a potential field U(x) =U0(1-cosαx) where U0 and α are constants. Find the time period of small oscillations.

Hint: Use the relation between the force and the potential energy.
Step 1: Find the force equation.
Given potential energy associated with the field,
                                       U(x) =U0(1-cosαx)                          ...(i)
Now,                      Force, F=-dU(x)dx
                                         [ for a conservatine force F, we can write F=-dUdx]
[We have assumed the field to be conservative]
                            F=-ddx(U0-U0 cos αx)=-U0αsinαx
F=-U0α2x                                                          ...(ii)
                                             F(-x)
As U0, α are constant,
Motion is SHM for small oscillations.
Step 2: Find the time period of oscillations.
Standard equation for SHM, F=-mω2x                                                      ...(iii)
Comparing Eqs. (ii) and (iii), we get,
                                         mω2=U0α2
ω2=U0α2m or ω=U0α2m
                     Time period, T=2πω=2πmU0α2