Consider an ideal gas with the following distribution of speeds.

Speed (m/s) % of molecules
200 10
400 20
600 40
800 20
1000 10

(a) Calculate vrmsvrms and hence T. (m=3.0×10-26kg)(m=3.0×1026kg)

(b) If all the molecules with a speed of 100 m/s escape from the system, calculate the new vrmsvrms and hence T. 

Hint: The total energy of the molecules depends on the temperature of the gas.
Step 1: Find the RMS speed and temperature of the gas in case 1.
(a) We know that, v2rms=niv2iniv2rms=niv2ini
This is the RMS speed for all molecules collectively.
Now,
vrms=(niv2ini)12vrms=(niv2ini)12
      =n1v21+n2v22+n3v23+..........+nnv2nn1+n2+n3+.......+nn      =n1v21+n2v22+n3v23+..........+nnv2nn1+n2+n3+.......+nn
     =n1v21+n2v22+n3v23+n4v24+n5v25n1+n2+n3+n4+n5     =n1v21+n2v22+n3v23+n4v24+n5v25n1+n2+n3+n4+n5
     =10×(200)2+20×(400)2+40×(600)2+20×(800)2+10×(1000)2100     =10×(200)2+20×(400)2+40×(600)2+20×(800)2+10×(1000)2100
     =1000×(4+32+144+128+100)     =1000×(4+32+144+128+100)
     =408×1000=639 m/s     =408×1000=639 m/s
Now, according to the kinetic theory of gasses, 12mv2rms=32kBT12mv2rms=32kBT
[KBKB= Boltzmann constant, m = mass of gaseous molecules]
                 T=13mv2rmskB=13×30×10-26×4.08×1051.38×10-23
                                              =2.96×102K=296 K
Step 2: Find the RMS speed and temperature of the gas in case 2.
(b) If all the molecules with speed 1000 m/s escape, then,
                  v2rms=10×(200)2+20×(400)2+40×(600)2+20×(800)290
       =10×1002×(1×4+2×16+4×36+2×64)90
      =10000×3089=342×1000 m2/s2
 vrms=584 m/s
Again,                T=13mv2rmskB
                         =13×3×10-26×1051.38×10-23
=2.478×102
=247.8=248 K