Hint: The total energy of the molecules depends on the temperature of the gas.
Step 1: Find the RMS speed and temperature of the gas in case 1.
(a) We know that, v2rms=∑niv2i∑niv2rms=∑niv2i∑ni
This is the RMS speed for all molecules collectively.
Now,
vrms=(∑niv2i∑ni)12vrms=(∑niv2i∑ni)12
=√n1v21+n2v22+n3v23+..........+nnv2nn1+n2+n3+.......+nn =√n1v21+n2v22+n3v23+..........+nnv2nn1+n2+n3+.......+nn
=√n1v21+n2v22+n3v23+n4v24+n5v25n1+n2+n3+n4+n5 =√n1v21+n2v22+n3v23+n4v24+n5v25n1+n2+n3+n4+n5
=√10×(200)2+20×(400)2+40×(600)2+20×(800)2+10×(1000)2100 =√10×(200)2+20×(400)2+40×(600)2+20×(800)2+10×(1000)2100
=√1000×(4+32+144+128+100) =√1000×(4+32+144+128+100)
=√408×1000=639 m/s =√408×1000=639 m/s
Now, according to the kinetic theory of gasses, 12mv2rms=32kBT12mv2rms=32kBT
[KBKB= Boltzmann constant, m = mass of gaseous molecules]
∴ T=13mv2rmskB=13×30×10-26×4.08×1051.38×10-23
=2.96×102K=296 K
Step 2: Find the RMS speed and temperature of the gas in case 2.
(b) If all the molecules with speed 1000 m/s escape, then,
v2rms=10×(200)2+20×(400)2+40×(600)2+20×(800)290
=10×1002×(1×4+2×16+4×36+2×64)90
=10000×3089=342×1000 m2/s2
vrms=584 m/s
Again, T=13mv2rmskB
=13×3×10-26×1051.38×10-23
=2.478×102
=247.8=248 K