Hint: Acceleration of body on rough incline plane decreases.
Step 1: Find the acceleration of the body on a smooth incline plane.
Consider the diagram where a body slides down from along an inclined plane of inclination θ(=45∘)θ(=45∘)
On Smooth inclined plane Acceleration Of a body sliding down a smooth inclined
a=g sin θHere, θ=45∘∴ a=g sin 45∘=g√2 a=g sin θHere, θ=45∘∴ a=g sin 45∘=g√2
Step 2: Find the length (s) of the incline plane
Let the traveled distance be
Using the equation of motion. s=ut+12at2, we get s=ut+12at2, we get
s = 12g√2T2or s = gT22√2 s = 12g√2T2or s = gT22√2
Step 3: Find the acceleration of the body on the rough inclined plane.
On rough inclined plane Acceleration of the body a=g(sin θ−μ cos θ)a=g(sin θ−μ cos θ)
=g(sin 45∘−μcos 45∘)=g(1−μ)√2(As,sin 45∘=cos 45∘=1√2)=g(sin 45∘−μcos 45∘)=g(1−μ)√2(As,sin 45∘=cos 45∘=1√2)
Step 4: Find the coefficient of friction by applying the equation of motion.
Again using the equation of motion, s=ut+12at2, we get s=ut+12at2, we get
S=0(pT)+12g(1−μ)√2(ρT)2or S=g(1−μ)p2T22√2 ...(ii)S=0(pT)+12g(1−μ)√2(ρT)2or S=g(1−μ)p2T22√2 ...(ii)
From Eqs. (i) and (ii), we get
gT22√2=g(1−μ)p2T22√2or (1−μ)p2=1or 1−μ=1p2or μ=(1−1p2)gT22√2=g(1−μ)p2T22√2or (1−μ)p2=1or 1−μ=1p2or μ=(1−1p2)