Q. 38 The displacement vector of a particle of mass m is given by r(t)=i^ A cos ωt+j ^B sin ωt.

(a) Show that the trajectory is an ellipse.
(b) Show that F=2rt.


Hint: Acceleration of the particle at=dvtdt.
Step 1: Find the relation between x and y by eliminating t.
(a)
The displacement vector of the particle of mass m is given by
r(t)=i^Acosωt+j^Bsinωt
 Displacement along the x-axis is,
       x=Acos ωtor xA=cos ωt                   ...i
Displacement along the y-axis is,
and, y=Bsin ωtor   yB=sin ωt
Squaring and then adding Eqs. (i) and (ii), we get
x2A2+y2B2=cos2 ωt+sin2 ωt=1
This is an equation of the ellipse.
Therefore, the trajectory of the particle is an ellipse.
Step 2: Find velocity by using vt=drtdt.
(b)
Velocity Of the particle
vt=drtdt=i^ddt(Acosωt)+j^ddt(Bsinωt)  =i^[A(sinωt).ω]+j^[B(cosωt).ω]  =i^Aωsinωt+j^Bωcosωt
Step 2: Find acceleration by using at  = dvtdt.
Acceleration of the particle at  = dvtdt.
or
                 a=i^dd(sinωt)+j^ddt(cosωt)  =i^[cosωt]ω+j^[sinωt],ω  =i^2cosωtj^2sinωt  =ω2[i^Acosωt+j^Bsinωt]  =ω2r
Step 3: Find the force acting on the particle.

 Force acting on the particle = 
F=mat=2rt.