Q. 38 The displacement vector of a particle of mass m is given by r(t)=ˆi A cos ωt+^j B sin ωtr(t)=^i A cos ωt+^j B sin ωt.

(a) Show that the trajectory is an ellipse.
(b) Show that F=2r(t)F=mω2r(t).


Hint: Acceleration of the particle a(t)=dv(t)dt. a(t)=dv(t)dt.
Step 1: Find the relation between x and y by eliminating t.
(a)
The displacement vector of the particle of mass m is given by
r(t)=ˆiAcosωt+ˆjBsinωtr(t)=^iAcosωt+^jBsinωt
 Displacement along the x-axis is,
       x=Acos ωtor xA=cos ωt                   ...(i)
Displacement along the y-axis is,
and, y=Bsin ωtor   yB=sin ωt
Squaring and then adding Eqs. (i) and (ii), we get
x2A2+y2B2=cos2 ωt+sin2 ωt=1
This is an equation of the ellipse.
Therefore, the trajectory of the particle is an ellipse.
Step 2: Find velocity by using v(t)=dr(t)dt.
(b)
Velocity Of the particle
v(t)=dr(t)dt=ˆiddt(Acosωt)+ˆjddt(Bsinωt)  =ˆi[A(sinωt).ω]+ˆj[B(cosωt).ω]  =ˆiAωsinωt+ˆjBωcosωt
Step 2: Find acceleration by using a(t)  = dv(t)dt.
Acceleration of the particle a(t)  = dv(t)dt.
or
                 a=ˆidd(sinωt)+ˆjddt(cosωt)  =ˆi[cosωt]ω+ˆj[sinωt],ω  =ˆi2cosωtˆj2sinωt  =ω2[ˆiAcosωt+ˆjBsinωt]  =ω2r
Step 3: Find the force acting on the particle.

 Force acting on the particle = 
F=ma(t)=2r(t).