Capacitors C1=10μF and C2=30μF are connected in series across a source of emf 20KV. The potential difference across C1 will be
1. 5 KV
2. 15 KV
3. 10 KV
4. 20 KV
The equivalent capacitance between A and B is as the given figure:
1. 16πϵ0r
2. 4πϵ0r
3. 8πϵ0r
4. None of these
Two metallic spheres of radii 2cm and 3cm are given charges 6mC and 4mC respectively. The final charge on the smaller sphere will be if they are connected by a conducting wire
1. 4mC
2.6mC
3. 5mC
4. 10mC
1. | v | 2. | v√2 |
3. | v√2 | 4. | 2v |
In the circuit shown in the figure, the energy stored in 6 μF capacitor will be:
1. | 48×10−6 J | 2. | 32×10−6 J |
3. | 96×10−6 J | 4. | 24×10−6 J |
The figure shows some of the equipotential surfaces. Magnitude and direction of the electric field is given by
1. 200 V/m, making an angle 1200 with the x-axis
2. 100 V/m, pointing towards the negative x-axis
3. 200 V/m, making an angle -600 with the x-axis
4. 100 V/m, making an angle 300 with the x-axis
An air capacitor of capacity C=10μF is connected to a constant voltage battery of 12 V. Now the space between the plates is filled with a liquid of dielectric constant 5. The charge that flows now from battery to the capacitor is
1. 120 μC
2. 699 μC
3. 480 μC
4. 24 μC
A and B are two concentric metallic shells. If A is positively charged and B is earthed, then electric
1. Field at common centre is non-zero
2. Field outside B is nonzero
3. Potential outside B is positive
4. Potential at common centre is positive
The electric potential at a point at distance √3R from the centre of disc
of radius R lying in the axis of the disc whose surface charge density is σ
will be given by:
1. σ2ε0[2-√3]R 2. σ2ε0[2+√3]R
3.σ2ε0[√3-√2]R 4. σ2ε0[√3+√2]R
An elementary particle of mass m and charge e is projected with velocity v at a much more massive particle of charge Ze, where . What is the closest possible approach of the incident particle ?
1.
2.
3.
4.