Chapter Four
Moving Charges and Magnetism
Oersted
4.1 Introduction
NEETprep Audio Note:
Following this, there was intense experimentation. In 1864, the laws obeyed by electricity and magnetism were unified and formulated by James Maxwell who then realised that light was electromagnetic waves. Radio waves were discovered by Hertz, and produced by J.C.Bose and G. Marconi by the end of the 19th century. A remarkable scientific and technological progress took place in the 20th century. This was due to our increased understanding of electromagnetism and the invention of devices for production, amplification, transmission and detection of electromagnetic waves.
* See the box in Chapter 1, Page 3.
Figure 4.1 The magnetic field due to a straight long current-carrying wire. The wire is perpendicular to the plane of the paper. A ring of compass needles surrounds the wire. The orientation of the needles is shown when (a) the current emerges out of the plane of the paper, (b) the current moves into the plane of the paper. (c) The arrangement of iron filings around the wire. The darkened ends of the needle represent north poles. The effect of the earth’s magnetic field is neglected.
In this chapter, we will see how magnetic field exerts forces on moving charged particles, like electrons, protons, and current-carrying wires.
We shall also learn how currents produce magnetic fields. We shall see how particles can be accelerated to very high energies in a cyclotron. We shall study how currents and voltages are detected by a galvanometer.
In this and subsequent Chapter on magnetism, we adopt the following convention: A current or a field (electric or magnetic) emerging out of the plane of the paper is depicted by a dot (). A current or a field going into the plane of the paper is depicted by a cross ()*. Figures. 4.1(a) and 4.1(b) correspond to these two situations, respectively.
Hans Christian Oersted (1777–1851) Danish physicist and chemist, professor at Copenhagen. He observed that a compass needle suffers a deflection when placed near a wire carrying an electric current. This discovery gave the first empirical evidence of a connection between electric and magnetic phenomena.